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Abstract

An iterative procedure is developed for least
squares estimation, from measured impedance data,

of the parameters specifying a lumped-element
resonant circuit equivalent to a dielectric
resonator single resonance. The procedure is

applicable to large sets of measured data obtained
by an automatic network analyzer.

Introduction

For many years, parameters of an equivalent
circuit were discerned from microwave measurements
manually, often employing graphical aids [1].
Modern vector network analyzers allow the
microwave experimentalist to quickly and easily
gather a large quantity of impedance data,
particularly when the system is automated. For an
analysis involving M circuit parameters, there is
statistical benefit from utilizing a large number
of data points N (with N >> M). 1In addition to an
improved determination of the parameter estimates,
it is also possible to find an approximation of
the confidence limits on the parameter values,
directly from the measured data. The procedure to
be described here extends the work of [2] to the
situation in which measurements are performed over
a range of frequencies.

Least~squares procedure

For the initial investigation, measured
reflection coefficient data was considered over a
narrow range of frequencies about wp, the single
resonant frequency under study, for a cylindrical
dielectric resonator mounted in a metal
cylindrical cavity. Coupling to the TEgpjs mode of
the resonator was by means of a small loop at the
end of an OSM connector protruding through the
metal cavity wall [3].
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The equivalent lumped circuit model follows

that of [4], and is shown in Figure 1. Rg is
negligible, so the input impedance is
&Rc
7 = JXe + JZRchS + 1—:_36;5 (1)
where k = coupling coefficient
QO = unloaded Q-factor
w - w
6§ = - 0
0
w @
and Q=" - .
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Clearly, § and Q are functions of wgy.

The circuit model is thus described in terms
of five real parameters: Xg, Qg, wg, &, and Qq.
For simplicity of notation, they are denoted by
symbols a1 to asg. The purpose of the
investigation is to determine the numerical values
of these five circuit parameters utilizing the
multitude of measured data.

Consider that initial estimates for circuit
parameters a; have been made. These values can be

substituted "in (1), and the resulting input
impedance is
Zy(w) = Ry(w) + § X)(@) (2)
Wo
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Figure 1. Equivalent circuit near wg -
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If the parameters are allowed to wvary, the
computed values of the real and imaginary part of
impedance are

5 aRo(w)
Rc(w) = Ro(w) T § —BET—— Aaj (3)
j=1 B
5 BXO(w)
and XC(w) = Xo(w) f § ‘EZT—— Aaj (4)
j=1 J

Let the total number of measured data points be N.
Further, let R} represent the real component of
the ith measured data point’s impedance and,
similarly, let X& represent the imaginary part.

To implement the method of least squares, it
is necessary to minimize the two "error functions"

i fyiar] o
and
ifgter]

in a single numerical procedure.

Ordinarily, one would be dealing with an
input data vector of length N to store N real data
points. In this case, N elements arise from the
real part of the complex impedance data, plus yet
another N elements from the imaginary components,
after the original complex problem has been split
into a pair of purely real relations. The easiest
way to accomodate this is to acknowledge the total
system 1is now twice as large and utilize a
partitioned vector/matrix formulation with the
first N rows reserved for the real components, and
rows N + 1 through 2N similarly reserved for the
imaginary components.

To minimize S; and Sy with respect to each of
the parameter increments Aajy, set the derivatives
equal to zero and solve

=0 (7)

for each k, k=1, 2, ..., 3.

This gives a system of five simultaneous
equations of the form

I ™Mw

ﬂk; l[Aaj ajk] k=1,2, ..., 5 (8

S P OV |
where ﬂk = z 3 RM - R0 32
i=1 oy k
(9)
2N J . ax1]
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+ 2 Y -X —
i=N+1la§ ™ %o aakj
and the elements ajk are computed from
i o1
|
oLy = = 2
Jey =1 o, da, da
i3 k
2N 1 9%, 8%,
+ Z R j=1,2,...,5 (10)
i=N+1 o5 aaj aak k=1,2,...,5
This may be expressed compactly as
[8> = & [aa> (11)

where |ﬁ> and IAa> are real column vectors of
length 5, and ¢ is a 5 by 5 real matrix. From
(11), it is clear that correction (Aay, Aajp, etc.)
to be applied to the estimated parameter values
may be obtained from

1

|aa> = g_ |8>. (12)

Also, it is obvious that there is no reason why
this set of corrections cannot be applied
repeatedly.

Initial estimates

Initial estimates of the parameters aj to ag
are required to begin the solution. For the
circuit model wunder consideration, it is well
known that the input impedance locus is
approximately circular on the complex (impedance)
plane. As the magnitude of the rate of change of
Z with frequency is maximum at resonance, it is
practical to detect the data point closest to wp
by numerically computing IdZ/dol at each point.
It is, further, helpful to plot IdZ/dwl versus w
to confirm that the desired magnitude peak is not
obscured by noise in the data. Since Xg is the
value of reactance occurring at vy, Xe 1is
immediately estimated by association.

Unloaded Q-factor, Qgp, may be approximated
very well from the raw data by

(2
_ 0 1dZ(w)
% = R l dw I (13)
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As mno satisfactory means of estimating Qg is
available, its initial value is taken to be zero.
Effective coupling coefficient & is typically in
the range 0 to 2, and the procedure is not highly
sensitive to its value. Thus, the determination
of x may be launched from an initial estimate of
1.0.

Iterative procedure

The least-squares procedure will obtain the
solution very quickly from initial estimate points

which are near to the final wvalues. However,
the results are not reliable when the initial
parameter estimates  become only moderately
distant. The Marquardt algorithm [5] is relevant

here, as it interpolates the solution process, by
means of a parameter X, between the Taylor
expansion solution and a gradient search, which is
far superior for beginning the search from an

imperfect initial estimate. Incorporating the
Marquardt algorithm into the subject analysis
improved its convergence characteristics
significantly.

Confidence limits

Confidence limits for the parameter values
may also be determined from the measured data.
Although the problem is actually one of nonlinear

estimation, the impedance fitting function was
linearized (and that 1limitation overcome by
iterating the solution). Let y = a~ Then, it

may be shown that, to a linearized approximation,
there is approximately 95% confidence that the
true value of parameter aj, j o=1,2,...,5, will
lie in the interval

(14)

where a: is the final estimated parameter value as

determined by the least squares program, and
"s,e." is the standard error, defined by
1
s8.a ) = [((yps” )7
B i3
N
2
2 i?lle_zcl
with s~ = e (15)
Examples
To illustrate the procedure's tolerance of
noise, the first application example utilizes a
synthetic (computer-generated) reflection

coefficient data set, based on a known equivalent
circuit. The data consists of fifty points,
equally spaced by 0.25 MHz. To simulate heavy
noise, normally distributed random disturbances

corresponding to a magnitude standard error of 0.2
dB and phase standard error of 5° were introduced.
This level significantly exceeds the noise one
typically encounters in automated network analyzer
measurements.

Progression of parameter values through the
procedure is summarized in Table 1, and the final
fit (after four iterations) is shown in Figure 2.
While the classic one-step least squares solution
has a standard error of 3.4 Ohms, the iterated
procedure converges to an improved solution with
standard error 1.6 Ohms in four iterations.
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EXACT INITIAL ITER.1 ITER.4
VALUES ESTIMATES
Xe (D) 10.0 0.0 10.183 10.236+0.47
Qe (1) 7.0 0.0 11.670 9.160+46.04
Qo 2500. 2413. 1781. 2533.+116.
fo(GHz) 4.0000 4.0005 4.0000 4.0012.3X10‘5
K 1.0 1.0 0.795 1.017+0.03

Table 1. Parameters for noisy synthetic case
study.

X - MEASURED SOLID LINE -
R(Q) COMPUTED
X
X
X
X
55 44 33 22 11 11 22 33 44 55
+iX(Q) —iX(Q)
Figure 2. Synthetic noisy data after four

iterations.

In an actual case study, using reflection
coefficient data collected with a network analyzer
system, the data file consists of 49 measured
points, equally spaced by 0.25 MHz and roughly
centered on resonance. The parameter estimates
progression is summarized in Table 2. Figure 3
shows the fit after one iteration, and Figure 4 is
the final (five iteratiomns) fit.



INITIAL ITER.1 1ITER.5
ESTIMATES
R (Q) 0.0 11.070 10.707+0.083
Qe (D) 0.0 46.0 -1.784+1.922
Qo 1000* 1625. 3979432
fo(GHz) | 7.0775 7.0773  7.0775+(4.5x106)
K 1.0 0.671  0.96110.0049

¥*see text

Table 2. Parameters for actual case study.

SOLID LINE -
COMPUTED

X - MEASURED
R(Q)

565 44 33 22 11 11 22 33 44 55
+iX(Q) —ix(Q)
Figure 3. Actual case study after one iteration.

SOLID LINE -
COMPUTED

X - MEASURED

55 44 33 22 11 11 22 33 44 55
+iX(Q) —iX(Q)
Figure 4. Actual case study after five

iterations.
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Although the initial estimate of Qo from (13)
was 3823, this solution was launched from an
intentionally distorted value of 1000, in order to
illustrate the procedure’s propensity for
convergence. In this case, the procedure reduced
the standard error from 6.70 Ohms for iteration 1
to 0.29 Ohms after iteration 5.
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