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Abstract

An iterative procedure is developed for least

squares estimation, from measured impedance data,
of the parameters specifying a lumped-element
resonant circuit equivalent to a dielectric
resonator single resonance. The procedure is

applicable tO large sets of measured data obtained
by an automatic network analyzer,

Introduction

For many years, parameters of an equivalent
circuit were discerned from microwave measurements
manually, often employing graphical aids [1].
Modern vector network analyzers allow the
microwave experimentalist to quickly and easily
gather a large quantity of impedance data,
particularly when the system is automated. For an
analysis involving M circuit parameters, there is
statistical benefit from utilizing a large number
of data points N (with N >> M). In addition to an

improved determination of the parameter estimates,
it is also possible to find an approximation of

the confidence limits on the parameter values,

directly from the measured data. The procedure to

be described here extends the work of [2] to the

situation in which measurements are performed over

a range of frequencies.

Least-sauares procedure

For the initial investigation, measured

reflection coefficient data was considered over a
narrow range of frequencies about 00, the single

resonant frequency under study, for a cylindrical

dielectric resonator mounted in a metal

cylindrical cavity. Coupling to the TEOlf mode of

the resonator was by means of a small loop at the
end of an OSM connector protruding through the

metal cavity wall [3] .

This material is based upon work supported by

the National Science Foundation under Grant ECS–
8L43558.

The equivalent lumped circuit model follows

that of [4], and is shown in Figure 1. Re is

negligible, so the input impedance is

KR
cz = jxe + j2RcQe~ + 1 + jQofl

where K = coupling coefficient

(1)

Q. = unloaded Q-factor

(’)-m
o

6=—
‘o

Clearly, 6 and Q are functions of WO.

The circuit model is thus described in terms

of five real parameters: Xe, Qe, IJI), K, and Qo.

For simplicity of notation, they are denoted by

symbols al to ab. The purpose of the

investigation is to determine the numerical values

of these five circuit parameters utilizing the

multitude of measured data.

Consider that initial estimates for circuit
parameters aj have been made. These values can be

substituted in (l), and the resulting input

impedance is

.ZO(U) = RO(CJ) + j XO(U) (2)

L

e

to N,A,
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Figure 1. Equivalent circuit near tie.
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If the parameters are allowed to vary, the

computed values of the real and imaginary part of

impedance are

RC(U)

and xc (w)

Let the total

:J-’ajl ‘3)=RO(W) + X

:S-A’J ‘4)=Xo(u) + z

number of measured data points be N.

Further, let R$ represent the real ~omponent of

the iti measured data point’s impedance and,

similarly, let Xi represent the imaginary part.

To implement the method of least squares, it

is necessary to minimize the two “error functions”

and

in a single numerical procedure,

Ordinarily, one would be dealing with an

input data vector of length N to store N real data

points. In this case, N elements arise from the

real part of the complex impedance data, plus yet

another N elements from the imaginary components,

after the original complex problem has been split

into a pair of purely real relations. The easiest

way to accommodate this is to acknowledge the total

system is now twice as large and utilize a

partitioned vectOr/matrix formulation with the

first N rows reserved for the real components, and

rows N + 1 through 2N similarly reserved for the

imaginary components.

To minimize S1 and S2 with respect to each of

the parameter increments Ask, set the derivatives
equal to zero and solve

asl as2
—=0
aAak

and
q=o

(7)

foreachk, k=l, 2, . . . . 3.

This gives a system of five simultaneous
equations of the form

~k=;
[1

Aa. a. k=l,’, . ...5
J Jk

(8)

j=l

2N

+x
i=N+l

and the elements a.
Jk

N

2N
+x

i=N+ 1

are computed from

j = 1,2, ...,5 (10)

k= 1,2 ,..., 5

This may be expressed compactly as

18> = a I’s> (11)

where ]fl> and lAa> are real column vectors of

length 5, and g is a 5 by 5 real matrix. From

(11), it is clear that correction (Aal, Aa2, etc.)
to be applied to the estimated parameter values
may be obtained from

(12)

Also, it is obvious that there is no reason why
this set of corrections cannot be applied
repeatedly.

Initial estimates

Initial estimates of the parameters al to a5

are required to begin the solution. For the
circuit model under consideration, it is
known

well
that the input impedance locus is

approximately circular On the complex (impedance)
plane. As the magnitude of the rate of change of

Z with frequency is maximum at resonance, it is
practical to detect the data point closest to uo
by numerically computing ldZ/dwl at each point.

It is, further, helpful to plot ldZ/dul versus OJ
to confirm that the desired magnitude peak is not

obscured by noise in the data. Since Xe is the

value of reactance occurring at ‘O> ‘e is
immediately estimated by association.

unloaded Q-factor, Qo, may be approximated
very well from the raw data by

J%_ dzfd
‘O = 2ROW & (13)
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As no satisfactory means of estimating Qe is
available, its initial value is taken to be zero.

Effective coupling coefficient K is typically in

the range O to 2, and the procedure is not highly

sensitive to its value. Thus , the determination

of K may be launched from an initial estimate of

1.0.

Iterative Drocedure

The least-squares procedure will obtain the

solution very quickly from initial estimate points

which are near to the final values. However,

the results are not reliable when the initial

parameter estimates become only moderately

distant. The Marquardt algorithm [5] is relevant

here, as it interpolates the solution process, by

means of a parameter A, between the Taylor

expansion solution and a gradient search, which is
far superior for beginning the search from an

imperfect initial estimate. Incorporating the

Marquardt algorithm into the subj ect analysis

improved its convergence characteristics

significantly.

Confidence limits

Confidence limits for the parameter values

may also be determined from the measured data.

Although the problem is actually one of nonlinear

estimation, the impedance fitting function was
linearized (and that limitation overcOme by

iterating the solution). Let ‘y = %–l. Then, it

may be shown that, to a linearized approximation,

there is approximately 95% confidence that the
true value of parameter aj, j = 1,2, . . . ,5, will

lie in the interval

aj *2 se. (aj) (14)

where a. is the final estimated parameter value as

determined by the least squares program, and
Ms,e.,, is the standard error, defined by

~

S.E.(aj ) =
[ 1

(7jj)s2 2

N

x I I 2

2
‘M – ‘C

i=l
with s =

N-M
(15)

Examples

To illustrate the procedure’s tolerance of

noise, the first application example utilizes a

synthetic (computer-generated) reflection
coefficient data set, based on a known equivalent

circuit. The data consists of fifty points,

equally spaced by 0.25 MHz. To simulate heavy

noise, normally distributed random disturbances

corresponding to a magnitude standard error of 0.2
dB and phase standard error of 5“ were introduced.

This level significantly exceeds the noise one

typically encounters in automated network analyzer

measurements.

Progression of parameter values through the

procedure is summarized in Table 1, and the final

fit (after four iterations) is shown in Figure 2.

While the classic one-step least squares solution

has a standard error of 3.4 Ohms, the iterated
procedure converges to an improved sollution with

standard error 1.6 Ohms in four iterations.

EXACT INITIAL

:

ITER.1 I’I’ER.4

VALUES ESTIMATES

Xc(n) 10.0 0.0 10.183 10.236*O.47

Qe(0) 7.0 0.0 11.670 9.160t6.04

QO 2500. 2413. 1781. 2533.*116.

fo (GHz ) 4.0000 4.0005 4.0000 4.00f2.3x10-5

K 1.0 1.0 0.795 1.o17fo.03

Table 1. Parameters for noisy synthetic case

Study

x - MEASURED SO1.ID LINE -

55 44 33 22 11 11 22 :33 44 55

+jX(Cl) -jX(Cl)

Figure 2. Synthetic noisy data after four

iterations.

In an actual case Study , using reflection
coefficient data collected with a network analyzer

system, the data file consists of 49 measured
points, equally spaced by 0.25 MHz and roughly

centered on resonance. The parameter estimates
progression is summarized in Table 2. Figure 3

shows the fit after one iteration, and. Figure 4 is
the final (five iterations) fit.
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rXe(s2)

Qe(Q)

QO

fo (GHz )

K

0.0 46.0 –1.784L1.922 I
1000* 1625. 3979*32 I

7.0775 7.0773 7.0775i(4.5xlo-6)

1,0 0.671 0.961f0.0049 I

*see text

Table 2. Parameters for actual case study.

x- MEASURED SOLID LINE -
R(f))

55 44 33 22 11 11 22 33 44 55

+jX(f3) –jX(f’1)

Figure 3. Actual case study after one iteration.

. . .-.—x – MEASURED SOLID LINE -
R(f))

COMPUTED

r- 1 1 1 I 4

55 44 33 22 11 11 22 33 44 55

+jX(f2) –jX(fl)

Although the initial estimate of QO from (13)

was 3823, this solution was launched from an
intentionally distorted value of 1000, in order to

illustrate the procedure’s propensity for

convergence. In this case, the procedure reduced

the standard error from 6.70 Ohms for iteration 1
to 0.29 Ohms after iteration 5.

References

[1]

[2]

[3]

[4]

[5]

L.B. Felsen and A.A. Oliner, ‘fDetermination

of equivalent circuit parameters for
dissipative microwave structures, *l Proc. IRE,

vol. 42, no. 2, pp. 477-483, February 1954.

D. Kajfez, “Numerical determination of two-

port parameters from measured unrestricted

data,” IEEE Trans. Instrum. Mess. , vol. lM_

24, no. 1, pp. 4-11.

D. Kajfez and M. Crnadak, “Precision
measurement of the unloaded Q-factor of

shielded dielectric resonators,:! Proc. IEEE

SOutheastcon Conference, March 1985.

D. Kajfez, “Q-factor measurement with network

analyzer,” IEEE Trans. Microwave Theory
Tech-> VO1. MTT-32, no. 7, pp. 666-670, JUI-Y

1984.

D.W. Marquardt, “An algorithm for least–
squares estimation of nonlinear parameters,t$

J. SIAM vol. 11, no. 2, pp. 431-441, June— >
1963.

Figure 4. Actual case study after five

iterations.

684


